Lecture 0

This is a series of Advanced Calculus notes of class Fall 2009 and Spring 2010 lectured by Prof. Jin-Tzu Chen 陳金次.

***

Calculus is the application of fundamental theorem of calculus.

Advanced calculus is a step stone toward modern mathematics.

Basic properties of continuous functions:

  • Intermediate value theorem
  • It has min/max value on closed interval

Starting from these properties, we may derive two mean value theorems.

From there we may derive the fundamental theorem of calculus.
Let \(f\) be a continuous function on \([a, b]\),

  • If \(G(x) = \int_a^x \! f(t) \, \mathrm{d}t\), then \(\frac{\mathrm{d}}{\mathrm{d}x} \! G(x) = f(x)\)
  • If \(\frac{\mathrm{d}}{\mathrm{d}x} \! F(x) = f(x)\), then \(\int_a^b \! f(x) \, \mathrm{d}x = F(b) - F(a)\)

高等微積分探討連續函數的基本性質、實數的性質、完備性。由公設建構實數

實數完備性 \(\rightarrow\) 微積分基本定理 \(\rightarrow\) 連續函數、黎曼可積

***

畢達哥拉斯的基本信條:給定線段 a, b 必定存在線段 c 同時量盡 a, b,即無理數不存在

歐氏幾何五大公設:

  • 任意兩點可連一直線
  • 線段可任意延長
  • 所有直角皆相等
  • 給定 O, A 兩點,存在有一圓 C 以 O 為圓心過 A 點
  • 過線外一點,可作一直線平行已知直線(平行公設)

球面是非歐幾何(球面上過北極的線一定與赤道相交,牴觸平行公設)

***

Why cannot you compare imaginary numbers?

  1. Suppose \(i < 2i\)
  2. Subtract \(i\) on both sides, you get \(0 < i\)
  3. Multiply \(i\) on both sides, you get \(-1 < -2\), which is a contradiction
Creative Commons License
This blog by Che-Liang Chiou is licensed under a Creative Commons Attribution 4.0 International License.